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Patch Set Based Representation for Alignment-Free
Image Set Classification
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Abstract—This paper presents a patch set based sparse repre-
sentation for image set classification. Compared with image-based
image set representation, our patch set based representation is
alignment-free and thus has an advantage for the tasks like video-
based face recognition, image set based object recognition, and
video-based hand gesture recognition, where precious alignment
is usually difficult or even impossible due to large variance in
view angle or pose. Specifically, to bypass the alignment issue,
we propose to adopt the patch based image set representation by
dividing each image within each set into patches, then we cluster
all the training patches into multiple clusters and classify the
test patches based on the cluster centers of training patches. The
labels of test patches within each cluster are inferred from a Patch
Set based Sparse Representation for Classification (PS-SRC),
and the labels of all test patches from all the clusters are then
aggregated to predict a single label for the test set. Experimental
results on video-based face recognition datasets (CMU-MoBo and
Youtube Celebrities), image set based object recognition dataset
(ETH-80) and video-based hand gesture recognition dataset
(Kinect Hand Gesture) demonstrate that our proposed method
consistently outperforms all existing ones, and the improvement
is very significant on the Youtube Celebrities and Kinect Hand
Gesture datasets. Moreover, we also quantitatively show the
robustness of our method to misalignment on the Mutli-PIE
dataset.

Index Terms—image set classification; patch set based repre-
sentation; alignment-free; video-based face recognition.

I. INTRODUCTION

Image set classification has widespread real-world appli-
cations, such as video-based face recognition, video-based
hand gesture recognition, and real-time object recognition for
robots. In image set classification, test data are a collection of
images belonging to the same class. Generally speaking, an
image set provides more information about the properties of
its associated class than any individual image in the set does.
Therefore, set based classification usually achieves higher
recognition accuracy than single image based recognition does.
Because of the importance and realistic setting of image
set classification, this research topic has drawn increasing
attention in the vision community [1][2][3][4][5][6].
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The task of image set classification is to predict the label
of the object contained in a given collection of images, where
object instances usually appear with intra-class variations. For
video-based recognition, such variations may include illumi-
nation, expression, occlusion, pose change, efc. Traditional
image set classification methods usually represent each image
in an image set by a single feature vector, and classify the
image set based on such image-based representation [7][8][9].
However, such an image-based representation usually requires
that the object instances in images are reasonably aligned.
Considering that alignment of object instances with various
intra-class variations is practically difficult, this requirement
of alignment greatly limits the applicability of these methods.
Even though there exists effort of face alignment for the video-
based face recognition [10], the alignment usually does not
work well for faces captured from different viewpoints. In
addition, auxiliary face images are needed to help with the
alignment, which restricts the stability and generalization of
such methods. Fig. 1 illustrates the difficulty of aligning object
images taken from different viewpoints.

Patch-based representation has shown good performance for
face recognition [11] and face verification [12] due to its
robustness against misalignment. Motivated by these works,
to overcome the alignment issue for image set classification,
we propose a patch set based representation which represents
the whole image set as a collection of patches generated from
all the images within this set. We further group similar patches
together so as to model the same part of the object/face/hand
in the image set. Then we use a patch set based sparse
representation to construct a virtual test patch and classify its
label with respect to those of training data. Finally the class
labels of all virtual test patches are aggregated to predict a
single label of the test image set. Existing works have shown
the effectiveness of sparse representation for face recognition
[13] and video based face recognition [14], especially in the
cases where there are unconstrained image corruptions and
noises. In our cases, noises and corruptions usually exist,
so we adopt the sparse representation framework for image
set classification. Experiments in section V will show the
effectiveness of our model, which validates the correctness
of our choice.

Contributions. Our work contributes to image set clas-
sification in the following aspects: (i) A patch set based
representation is proposed for alignment-free image set clas-
sification, and we have quantitatively showed the robustness
of our method to the misalignment issue; (ii) A nonnegative
constraint regularized Patch Set based Sparse Representation
for Classification (PS-SRC) is proposed for classification of
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(a) Some exemplary images from Youtube Celebrities. These face images
are from the same person.

Images from different classes

(b) Some exemplary images from ETH-80. The variance in view-angle
makes the alignment almost impossible for images within the same same
on this dataset.

some examples from different classes

(c) Some exemplary images from Kinect Hand Gesture.

Fig. 1. Some exemplary images from different datasets.

each subset of test patches, and such formulation is robust
to the outlier patches within each cluster; (iii) To reduce
the computational burden, we propose to cluster the training
patches first and partition the test patches into different clusters
based on the cluster centers of training patches. We then
conduct PS-SRC for training and test patches falling into the
same clusters. Extensive experimental results have verified that
such a strategy greatly improves the computational efficiency
and represents local information well for recognition, thereby
promoting the recognition accuracy; (iv) We evaluate the effect
of different regularizers in our PS-SRC formulation.

The rest of the paper is organized as follows: The works re-

lated to set based image classification are discussed in Section
II. We introduce our patch-based image set representation and
the image set classification method based on such representa-
tion in Section III. Then we propose an accelerating strategy
for our patch-based image set classification in Section IV.
We experimentally evaluate our method in Section V, and
conclude our work in Section VI.

II. RELATED WORK

Set based image classification methods can be categorized
into parametric model based methods and non-parametric
model based methods.

In parametric model based methods, each image set is
characterized by some parametric distribution, like Gaussian
[15] or Gaussian Mixture Model [7], then Kullback-Leibler
Divergence is used to evaluate the similarity between two dis-
tributions (image sets). But the performance of such methods
greatly relies on parameters estimation which is very difficult,
especially when there aren’t many images in some image
sets. Moreover, the performance of such methods may drop
significantly if the correlation between training and test set is
weak. Therefore non-parametric models are more often used.

Non-parametric model based methods can be further cate-
gorized several categories. The first category represents each
image set as a linear subspace [16] or a mixture of some linear
subspaces [17][18], and set-to-set distance is usually calculated
based Canonical Correlation Analysis (CCA) [16] and its
variants, like Kernelized CCA [19] or Localized CCA [20].
The second category represents each image set as a nonlin-
ear manifold [21][1][8] and set-to-set distance is calculated
based on the manifold to manifold distance, which can be
either calculated directly or calculated based on the subspace-
to-subspace distance. The third category characterizes the
distance between two sets based on the covariance matrix
[22][5][23]. Such covariance based methods demonstrate ro-
bustness to the data noises and varying sizes of image set.
The fourth category represents each image set as a affine or
convex hull [2][24][25][9], and set-to-set distance is calculated
based on the nearest virtual points between two hulls. In
other words, such affine/convex hull based methods represent
the test set with a virtual point and linearly reconstruct
such virtual point with the training images from each class.
In this sense, it is quite related to Nearest Subspace [26]
method in face recognition. It is worth noting that manifold
based representation and subspace based representation is not
suitable for image set representation if the number of the image
is small but in contrast the variance is significant. In contrast,
such affine/convex hull based methods are less sensitive to the
number of images in the set. However, all the aforementioned
works are based on the pairwise set-to-set distance to predict
the label of the test set.

Previous works [13][27] have shown that using all the
training samples to collaboratively represent the test image
is important for the good performance of face recognition.
Therefore, recently some researchers also use all the training
images from all the classes to represent the virtual point(s) in
affine/convex hull based image set representation. Specifically,
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in [28], Zhu et al. propose to represent each test set with only
one virtual point and use all the training images to linearly
reconstruct such virtual point. As a result, some important
information about the test image set is lost, for example, the
object images taken from different view angles also help the
recognition of this object. Consequently such lost information
will harm the robustness of recognition accuracy. In [14], Ortiz
et al. propose to sparsely represent each test image with all
the training images while enforcing all the test images share
the same reconstruction coefficients. Such constraint is too
strong especially for the case where images within each set
contains severe variances. Moreover, the performance of such
method can also be affected if test set contains some outlier
or the images are not well aligned. In [3], Chen et al. propose
to partition the images into different groups, and represents
all the test images in the same group with the group sparse
constraint. But such method is still not able to deal with the
image sets containing outlier images, which means the test
image pattern may neither appear in the training set nor can
be inferred by the training set. Furthermore, all the previous
works are based on image-based image set representation, i.e.,
each image in the image set is represented as one feature vector
of the image set. Such image set representation requires the
images are well aligned, which is usually very impractical, for
example, for faces with different poses, and very different or
even impossible for object images taken different view angles.

III. PATCH SET BASED REPRESENTATION FOR IMAGE SET
CLASSIFICATION

A. Patch Set Based Sparse Representation

Patch-based image representation has been shown to be
robust to misalignment to some extent [11][12]. In patch-
based face recognition [11], each patch of the test image is
separately represented by all the training patches [27], then
the label is predicted for each patch and all the labels are
aggregated to predict the label for the whole image. But for
image set classification, such a strategy is problematic due
to the following reasons: (i) Such a representation is very
computationally expensive. Each image set contains many
images, and each image contains many patches. As a result,
each image set contains a large amount of patches. It would be
computationally prohibited to compute a sparse representation
for every patch. (ii) There are usually many similar patches
among different classes, which could reduce the prediction
accuracy of the image set classification. For example, if the
background covers a large proportion of the image and they are
similar among different classes, patches from the background
would mislead the label prediction of the whole image set.

To overcome the previously stated two issues in convention-
al patch-based methods, we first partition the patches of the
test set into different clusters. In this paper, for simplification,
k-means clustering is used. After partitioning all the test
patches into different clusters, patches within the same cluster
are similar, and they are likely to represent the similar part(s)
of the objects belonging to the same class. Motivated by the
Sparse Representation based Classification (SRC) for image
classification, we propose a Patch Set based SRC (PS-SRC)

formulation to represent the patches within the same cluster by
using all the training patches. Namely, for all the test patches
within the same cluster, we first generate a virtual test patch
by linearly combing all the test patches within the same cluster
(the reason of generating virtual test patch will be given in the
Remarks after equation 1). With SRC, we represent the virtual
test patch with all the training patches sparsely.

Mathematically, we denote the test patches belonging to
the 4-th cluster as X* (i = 1,2,...,K) and denote all the
patches from all the training sets as D. Each column in
X% and D corresponds to the feature of a patch. With test
patches in the i-th cluster, we can use their linear superposition
y* = X'u' to generate a virtual test patch.! A basic idea to
identify the class of these test patches is to see which set of
training patches could linearly represent this virtual test patch.
Mathematically we aim to find reconstruction coefficients
(u?,v") that minimize the discrepancy between the test and
training patch set:

min
u', vt

st. 170 = l,u;'- >0,

1 . _ _
— || Xt — Dvt||? 4+ M|ut|]r + v][vle
5| | l[u'llx +vllv*lle, o

where u; is the j-th entry of sparse coefficients vector u’.
Remarks: (i) The ¢; norm (||u'l|;) reduces the role of
outlier test patches in classification by promoting sparsity of
coefficients of the test patches within the same cluster. Usually
some outlier test patches can be introduced into a given cluster
because of the following two reasons: Firstly, there are some
background or non-class-specific patches, and they would be
partitioned into some clusters and become the outlier patch-
es. Secondly, the simple k-means clustering method could
mis-partition certain patches to incorrect clusters. No matter
how the outlier patches are generated, they may mislead the
classification of test image sets. The sparse regularization on
u® helps discounting outlier test patches by preferring to set
their coefficients to be 0. (ii) We enforce the linear superpo-
sition coefficients for generating the virtual test patch to be
nonnegative. All the test patches within the same cluster are
similar, therefore it is no need and also impossible to cancel the
noises with the similar test patches within the same cluster. As
demonstrated in Fig. 8, such nonnegativity usually improves
the classification accuracy, which validates our conjecture. (iii)
17v* = 1 avoids the trivial solution (u!, y* and v* are zero
vectors). (iv) We impose the ¢, (¢ = 1,2) norm on vt If
q = 1, sparsity constraint is also imposed on the reconstruction
coefficients of the virtual test patch, and such ¢; norm is
especially desirable for the case that there are many outlier
patches in the training set, like background patches. When the
training set are relatively clean, similar to that of Collaborative
sparse Representation based Classification (CRC) [27], ¢5 can
be used, which will accelerate the computational efficiency.
(v) Our formulation can also be understood as that we seek
two nearest points between two sets, and these two points are
the linear combination of instances within each set with some
constraints. (vi)Our work extends the SRC [13] in terms of

'In this paper, we use the superscript to index the cluster number, and use
the subscript to index certain element in a vector or a submatrix.
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the formulation and application. Compared with Patch-based
CRC [11], our formulation is more robust the misalignment
and noises within each cluster.

After solving u* and v?, the virtual patch of the i-th cluster
is computed as ' = X'u'. We denote the sub-dictionary
corresponding to the m-th class as D,,, and subvector of
v® corresponding to D,,, as v’ . Following the classification
criteria of SRC [13], the label of 3° is predicted based on the
minimum reconstruction error criteria:

2

Finally the label of the test set is predicted by majority voting
of classification results of all the virtual test patches. If the ties
case is encountered in majority voting, we just assign the test
set to the class with the smallest index of the class label. The
same strategy is applied to the baseline methods with majority
voting.

. 1 . .
label(y") = arg min  [|y" - Dyl |3

B. Optimization of PS-SRC

It can be easily proven that objective function in equation
(1) is convex w.r.t. the reconstruction coefficients: (u‘, v*). For
simplification, following the commonly used methods [29], we
update u’ and v* alternatively.

1): Let y* = X'u’ be the virtual test patch of the i-th cluster.
When v is fixed and ¢; norm is imposed on v, the objective
w.r.t. v’ can be written as

min %Ily" — DV|2 +4[lvf]l; st 1T =1. (3)
To optimize the objectives in equation (3), we first optimize
the objective function without the constraint, then we project
the solution onto the feasible region. The objective without the
constraint is the standard sparse coding (LASSO) formulation
and it has been well studied. Lots of solvers have been
developed to optimize it. In this paper, following the work
[24] we adopt the Feature-Sign-Search algorithm [29] because
of its good performance and efficiency. It is worth noting that
Feature-Sign-Search algorithm is quite related to the Homo-
topy/LARS algorithm [30] and work in [31] has shown that
Homotopy method demonstrates good performance for SRC
based face recognition, but Feature-Sign-Search algorithm is
more efficient than LARS in terms of computational costs [29].

2): If /5 norm is imposed on v?, the objective w.r.t. v’ can
be written as

min o[y’ = Du'|2 + A5 st 1" =1. @)

With the Lagrange multiplier, we can easily get the closed for-
m solution corresponding to the objective function in equation
. ‘ ‘

3): When v* is fixed, the objective w.r.t. u’ can be written
as

: Ly i i)2 i i
min §HX u' — Du'||7 + M|y st uj >0, (5)

We use the same optimization method as that of equation (3)
to optimize u’.

4): Convergence of the algorithm. We alternative optimize
each variable, and do the projection in each subroutine. Such

Convergence rate on MoBo Convergence rate on Youtube Celebrities

0.0401

objective value

20 0 5

10 10
number of iterations number of iterations

Fig. 2. The change of the objective value with respect to the number of
iterations on the MoBo and Youtube Celebrities datasets.

strategy is similar to the work “Projected gradient methods for
linearly constraint problems [32]” where the gradient of the
objective is first calculated without considering the constraint.
Then gradient decent is used to update the solution, and at
the end of each step, the solution is projected to the feasible
region. Such idea is also frequently used in the problems
with the nonnegative constraint (eg. nonnegative sparse coding
[33]), or the solution is on the probabilistic simplex [34].
Tough the solutions these methods achieved are not the exact
solution of the problems, they are actually the solutions that
satisfy the constraints, and experiments have demonstrated the
good performance of these solutions. Fig. 2 also shows that
the objective function usually converges after a few iterations
with this optimization method.

IV. CLUSTER TRAINING PATCHES FOR EFFICIENT IMAGE
SET CLASSIFICATION

In previous section, we propose a patch set based repre-
sentation for image set classification based on the PS-SRC
formulation, and all the patches of all the training sets are used
as the dictionary to sparsely reconstruct the virtual test patch.
Consequently, the resultant dictionary D would probably be
extremely large. Taking the image set classification on the
MoBo dataset [35] which contains faces of 24 persons as
an example, if 50 images are used as training faces for
each person, and each image contains about 50 patches, then
the number of the atoms in the whole dictionary would
approximately be 60,000. The optimization of the sparse
reconstruction coefficients w.r.t. such a large dictionary would
be extremely time consuming [31]. However, in practical
applications of larger datasets, the dictionary could be even
larger. As a result, the image set classification directly based
on equation (1) is usually infeasible.

To address this issue, we only select a relevant subset of
training patches to reconstruct the virtual patches. A natural
idea is to cluster the training patches and the test patches into
smaller subsets and apply the PS-SRC formulation within each
subset. In the following sections, we propose two strategies
and discuss their feasibilities, respectively.

A. Cluster Test Patches First and Partition Training Patches
Based on Their Distances to Cluster Centers of Test Patches?
NO!

The first strategy is that we cluster the test patches first, and
all the training patches are partitioned into different clusters
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Fig. 3. Some statistics about the distribution of the patches on the ETH-80
dataset (KX = 1000). (a) shows that patches within most clusters are only
from a few classes, and more than a half of clusters only contain patches
from one class. (b) shows that for most test sets, patches of the same set
mostly falls into a very few clusters, which is typically less than 90 (in our
experiments, we do not count or consider clusters which contain less than 6
test patches from the same set).

based on their distances to the cluster centers of test patches.
Then we apply PS-SRC to training and test patches falling
into the same cluster and predict the label of virtual test patch
within that cluster. However, such strategy is not so scalable
to large datasets. For example, given a test set, since all these
images belong to the same class, it is not reasonable to set
the number of the clusters to be so large. Consequently the
number of the training patches falling into each test cluster is
still very large for large dataset. Besides, we need to conduct a
new clustering for each test set, computational cost at testing
time is very significant.

B. Cluster Training Patches and Partition Test Patches Based
on Their Distances to Cluster Centers of Training Patches?
YES!

The second strategy is that we cluster the training patches
first, then we partition all the test patches based on their
distances to the cluster centers of training patches. Similar to
previous strategy, the training and test patches falling into the
same cluster are also used to conduct PS-SRC, learn the virtual
test patch, and predict its label. Such strategy has several

advantages. Firstly, it reduces the computational cost in PS-
SRC. On the one hand, training patches within each cluster
are similar, therefore it is reasonable that most clusters only
contain patches from a few classes.> For example, more than
a half of clusters only contain patches from one class on the
ETH-80 dataset (Fig. 3). Therefore the dictionary size is not
very large in PS-SRC. On the other hand, test patches from
the same set probably only fall into a small fraction of all
the clusters which contain training patches that have the same
class label as that of the test patches (as shown in Fig. 3).
Therefore, the number of PS-SRC objectives needed to be
solved and the size of the dictionary in each objective will
not be so large. Secondly, this strategy is scalable to large
scale datasets. Based on the number of training classes and
the content complexity of patches, we can choose a number
of the clusters (K) according to the scale of the dataset. For
example, if there are many training classes and the patches are
more diverse, we can increase K accordingly. Therefore the
number of training patches falling into one cluster can always
be kept to be small. Thirdly, we use the patches falling into the
same clusters, which are probably similar, to conduct PS-SRC.
Therefore the locality information of all patches are preserved.
As demonstrated in [36] that such locality information helps
to improve the classification accuracy.

C. Summary.
In real applications, rather than using all the training patches
as the dictionary, we cluster the training patches with k-means
first. Based on the cluster centers of training patches, we
partition the test patches, and do the PS-SRC for training and
test patches falling into the same cluster. Mathematically, for
the ¢-th cluster which contains both training patches and test
patches, the objective of PS-SRC is given as follows:
1. , , .
S IX" = D |2+ A1 + ][0 e,

min
ut,vt

st. 170t = 1,u§- > 0.

(6)

Here X* and D; are the test and training patches falling into
the ¢-th cluster, respectively. Then the label of virtual test
patch is also predicted based on the minimum reconstruction
error criteria, and the label of the test set is still based on
the majority voting of all the virtual test patches. We illustrate
the pipeline of our patch set based representation for image set
classification in Fig. 4. We summarize the contribution of each
components as follows: i) By representing each image with a
collection of patches with different sizes, the misalignment can
be overcome. ii) By clustering training patches and partitioning
test patches based on their distances to cluster centers of
training patches, we can reduce the computational costs and
make patch-based sparse representation for image set classifi-
cation feasible. iii) Sparse representation based classification
has demonstrate good performance for image classification. By

2For similar patches among all classes, like background, they probably be
clustered into only one or a few clusters, or clustered into other clusters as
outliers. For the first two cases, the prediction of test set won’t be affected
because of the majority voting. For the last case, the sparsity regularizer can
also eliminate the effect of the outliers. Therefore our algorithm also handles
the case where similar background covers a large portion of image.
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Fig. 4. The flowchart of patch set based representation for image set classification.

performing sparse representation based classification within
each patch cluster, the performance image set classification
is guaranteed. iv) The majority voting procedure gets rid of
the effect of those outlier patches, and makes the image set
classification more robust.

V. EXPERIMENTS

In this section, we experimentally evaluate the proposed
method on the CMU-MoBo dataset [35], the Youtube Celebri-
ties dataset [37], the ETH-80 dataset [38], and the Kinect Hand
Gesture Recognition dataset [39]. These 4 datasets cover 3
possible image set classification scenarios: video-based face
recognition, object recognition for robot, and video-based hand
gesture recognition.Moreover, we name our method as PS-
SRC (¢1-£;1) if 1 norm is imposed on u® and v, respectively,
and we name our method as PS-SRC (¢1-¢5) if ¢; norm is
imposed on u! and /5 norm is imposed on v°.

A. Dataset Description

The CMU-MoBo (Motion of Body) Dataset [35] con-
tains videos of 24 persons walking on the treadmill, and
each person contains 4 different walking videos. Following
the work [1][22][10], we use the Viola-Jones’s cascade face
detector [40] to automatically detect the face for each video
frame, and all the faces are converted to gray-scale images
and resized to 30 x 30 pixels. Then histogram equalization is

used to overcome the illumination effect. Faces from the same
video forms a image set. Besides the image patches which
are detected by false positives and the alignment issues, faces
within each set also contain variances in pose, illumination,
and expression. Following the commonly used setting, for each
person, one image set is randomly selected as training set
and the remaining 3 videos as used test sets for each person.
10-fold validation experiments are conducted on this dataset.
Same with [28], the performance of different methods are
evaluated under three settings: we set the number of images
from each set to be 50, 100, and 200, respectively (If the total
image number is less than this number, all the images are
used) for both training and test sets. Such setting is practical
because in real applications, like video-based face recognition,
it is possible that we only have a short video clique for training
and test videos.

The Youtube Celebrities Dataset [37] is a very challenging
video-based face tracking and recognition dataset in terms
of dataset scale, the variances of the faces, and the low
resolution and high compression of the videos in this dataset.
Specifically, it contains 1910 video sequences of 47 persons,
and all the videos are downloaded from the Youtube. Same
with [1][22][10], we also use the Viola-Jones’s cascade face
detector [40] to detect the faces and resize faces to 30 x 30.
All faces are also converted to gray-scale images. Histogram
equalization is also used. Faces within each video sequence
form an image set. Besides the false positive patches, the faces
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of the same person contains large variances in illumination,
expression, pose, occlusion. We also use the commonly used
setting on this dataset[1][24][10], i.e., 3 video sequences are
used for training and 6 video sequences are used for test. 5-
fold validation experiments are conducted on this dataset.

The ETH-80 Dataset [38] contains 8 classes, and each class
contains 10 instances/objects of the same class. 41 images are
taken under different view angle for each instance, and they
form an image set. We use the 32 x 32 gray scale images for
classification. For this dataset, we use two settings. i) setting
S1: We use 5 objects as the training set for each class, and
use the images for the other 5 objects as test sets. So the
number of test sets is §x5=40; ii) Setting S2: Same with [9],
we sequentially choose one set as training set and use the rest
9 sets as test tests for each classes.

The Kinect Hand Gesture Dataset [41] contains both
depth images and RGB images corresponding to 10 gestures
taken under less controlled environments with Kinect. Each
gesture contains the same gestures made by 10 different
persons, which corresponds to the variances in the hands.
Moreover, the same gestures made by the same person also
contains 10 different images in terms of the direction and
location w.r.t. the cameras of the Kinect. For each gesture,
images done by the each person form an image set, therefore
each set contains 10 images. Similar to [41], we use the depth
information to detect and segment the hand first, then the
detected hands are converted to gray-scale images and resized
to 32 x 32 pixels. We randomly choose 2 image sets as the
training set and use the remaining 8 image sets as test sets for
each gesture.

We show some randomly sampled images from the Youtube
Celebrities, ETH-80, and Kinect Hand Gesture Datasets in
Fig. 1. For Youtube Celebrities, we show the images of
the same person from different image sets. It can be easily
seen that these images contain variance in pose, expression,
and illumination. For example, on ETH-80 and Kinect Hand
Gesture, there exist significant variance in view-angle for
images within each set, which makes the alignment difficult.
Consequently, the alignment issue affects the performance
of the image-based image set representation for image set
classification.

B. Experimental Setup

For simplification, we set the A = v = 0.01 on all the
dataset for the PS-SRC (¢1-£1). For the PS-SRC (¢1-/5), we
set A = 0.1 on all datasets, and set ~y=1le-5,1e-5,1e-3,1e-
3, on ETH-80, Kinect Hand Gesture, MoBo, and Youtube
Celebrities, respectively. As for the number of clusters (K
in k-means), we set X' = 500 on the Kinect Hand Gesture
dataset, and set X = 1000 on the CMU-MoBo, Youtube
Celebrities, and ETH-80 datasets 3. For simplicity, we directly
use pixel values in the patches as features, and all features
are normalized by their ¢ norm. We fix the patch size and

3Though k-means converges to local minima, we repeat the experiments on
the same test sets by 10 times, and the standard deviation is 0.70% on ETH-
80 and 0.37% on Hand-Gesture, respectively. We can see that the variance is
not significant.

the distance between two neighboring patches to be 8 and 4,
respectively, on CMU-MoBo, Youtube Celebrities, and ETH-
80. For the Kinect Hand Gesture dataset, we fix the patch size
and the distance between two neighboring patches to be 20 and
1 because the patches covering a larger hand/finger region is
more meaningful for the recognition of different gestures.

Baseline methods:We compare our method with four types
of methods:*

o Manifold based methods, including Manifold-Manifold
Distance (MMD) [1], and Manifold Discriminant Analy-
sis (MDA) [8];

« Affine/Convex hull based methods, including Affine Hull
based Image Set Distance (AHISD) [2], Convex Hull
based Image Set Distance (CHISD) [2], and Sparse
Approximated Nearest Points (SANP) [24];

« Collaborative representation based methods, including
Collaborative Representation based Classification (CRC)
[27], Sparse Representation based Classification (SRC)
[13], Image Set based Collaborative Representation for
Classification (ISCRC) with #; norm constraint [28] and
Mean Sequence Sparse Representation-based Classifica-
tion (MSSRC) formulation [14]. For CRC and SRC,
following the work of Zhu et al. [28], we use the average
representation residual of query set for classification.

« Besides the existing method, we also propose a baseline
method by regularizing with «* and v’ with ¢ norm
respectively in equation (6), i.e., we use the following
objective function to solve the (u’,v?), and denote the
baseline method based on this objective function as PS-
SRC (¢a-0s).

min
ut vt

st 1Tyt = 1,u§- > 0.

« Patch-based CRC (PCRC)[11]. We divide the images in
each set into patches by using the same way with our
method, and use the PCRC formulation to predict each
patch’s label, then majority voting is used to predict the
label of the test set.

o Patch based KNN (P-kNN). We divide the images in
each set into patches by using the same way with our
method, and use the kNN to predict each patch’s label,
then majority voting is used to predict the label of the
test set. In our experiments, we set k=55

1 . . .
SIX = Dyt |2 + Al |13 + yll0°lI3
2 (7

C. Performance Evaluation

1) Comparison with Baseline Methods: We list the per-
formance of different methods on CMU-MoBo, Youtube
Celebrities, ETH-80 and Kinect Hand Gesture in Table I,
Table II, and Table III, respectively. We see that our method,
despite its simplicity, achieves the best performance on all

4We don’t compare our method with kernel based methods, but our method
can be easily extended to the kernel formulation which can easily be done in
our future work.

SWe also tried k=3, 7, but the performance is worse than the cases where
k=3.
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TABLE I
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON
CMU-MOBO (%)

50 100 200
CRC [27] 89.6+1.8 | 924437 | 96.4+2.8
SRC [13] 91.0+2.1 91.8+£2.7 | 96.5+2.5
MMD [1] 73.8%+5.1 76.4+4.1 75.6£5.2
MDA [8] 79.7+£3.8 | 839425 86.0£2.3
AHISD [2] 932+19 | 939425 | 94.3+£25
CHISD [2] 91.7£2.4 | 925433 | 93.1£2.8
SANP [24] 88.8+£3.7 | 89.4£3.7 | 88.1+2.4
ISCRC [28] 96.1£2.6 | 96.24+2.6 | 96.9+2.1
MSSRC [14] 94.7£3.1 95.1£2.6 | 95.0+2.8

PCRC[11] 91.8+ 3.2 | 90.7+2.9 NA
P-ENN 96.2£2.5 | 96.5+2.4 | 96.7£2.5
PS-SRC(¢1-¢1) | 96.8+£23 | 97.44+2.1 | 98.1+ 1.9
PS-SRC(¢1-02) | 96.9+2.2 | 97.0+2.0 | 93.3£ 4.0
PS-SRC(¢2-f2) | 96.4£1.9 | 96.84+2.3 | 96.9+ 2.5

the datasets under all the settings. Specifically, most existing
methods perform reasonably well on MoBo, which is relatively
easy. Compared with MoBo, Youtube Celebrities contains
false positives and severe misalignments caused by the large
pose variance, expression, occlusion, it is more challenging.
Therefore most methods will have difficulty on this dataset.
Thanks to the robustness of our method (PS-SRC (¢1-¢1))
against outliers and misalignment, our method is superior over
the previous methods by a large margin, including PCRC.
Moverover, our method is also better than the patch-based
kNN. The good performance of our method on ETH-80 and
Hand Gesture also results from the robustness of our method
to the alignment issue which is also serious on these two
datasets because of severe view angle variances.® Moreover,
the performance of our method can be further improved by
carefully tuning the patch size, the distance between two
neighboring patches, and the number of clusters (K) based on
the data in the task we are dealing with. For instance, when
patches of different size (4, 6, and 8 respectively) are used on
ETH-80, the classification accuracy of our method moves up
to 77.1% (please refer to section V-E).

It is also worth noting that the performance of our method
(200 images per set) is comparable with or better than that
of the image alignment based method [10] whose accuracy
is 95.0% and 74.6% on MoBo and Youtube Celebrities,
respectively, even though [10] uses more training images for
each set and an auxiliary dataset is used for face alignment
in [10]. Moreover, as shown in Table I, more images in each
set usually help improve the accuracy. If all the images are
used in each set on the MoBo dataset, the accuracy of PS-
SRC (L1-L1) will reach 98.841.8%, which is even higher
than the accuracy of 200 images per set (98.1%). Besides the
classification accuracy of our method on different datasets,
we also show the patch label prediction confusion matrix on
ETH-80 (S1 setting) in Fig. 5. We can see that the percentage

%The performance of MDA on the ETH-80 and Kinect Hand Gesture
datasets is lower than 50% because the limited training images with large
variance within each set (The number of training images is 41 and 20 on
ETH-80 and Hand Gesture, respectively.), which constrains the performance
of MDA. Similar phenomenon is also observed in paper [9] on the ETH-80
dataset. Therefore we don’t include its performance on these two dataset in
this paper.

TABLE II
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON
YOUTUBE CELEBRITIES (%)

50 100 200
CRC [27] 56.7+7.4 | 59.546.6 61.4+£6.4
SRC [13] 61.5+69 | 64.41+6.8 66.0£6.7
MMD [1] 57.8£6.6 | 62.8+ 6.2 64.7£6.3
MDA [8] 58.5+6.2 | 63.316.1 65.41+6.6
AHISD [2] 57.5£7.9 | 59.7£7.2 57.0£5.5
CHISD [2] 58.0£8.2 | 62.848.1 64.8+7.1
SANP [24] 57.8£7.2 | 63.1+8.0 65.6£7.9
ISCRC [28] 62.3+6.2 | 65.646.7 66.7£6.4
MSSRC [14] 70.9+3.9 | 70.9+3.8 70.7+3.6
PS-SRC(¢1-¢1) | 73.5+3.3 | 74.3£3.3 74.5 + 3.1
PS-SRC(¢1-f2) | 60.5+3.1 61.2+1.7 60.9£3.0
PS-SRC({2-f2) | 60.5+2.4 | 60.5£3.3 | 61.3 £ 3.0

TABLE III

PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON
ETH-80 AND KINECT HAND GESTURE (%)

ETH-80 (S1) | ETH-80 (S2) | Hand Gesture

CRC [27] 83.84+8.6 61.9+6.2 70.5+4.2
SRC [13] 88.0+8.4 65.8+£7.2 72.0+3.9
MMD [1] 82.3£5.6 72.1+7.1 77.4+5.7
AHISD [2] 78.0£5.2 57.8£5.7 87.01+4.8
CHISD [2] 81.31+6.7 58.6+5.3 84.84+3.2
SANP [24] 75.5+5.3 57.9+6.3 66.0£8.6
ISCRC [28] 83.04+3.7 61.3+4.4 79.0+4.6
MSSRC [14] 83.75+4.6 62.9+4.5 76.5+4.5
PCRC[11] 69.3+5.4 71.4+7.2 72.1+4.9
P-kNN 74.3+6.4 724454 89.1+4.3
PS-SRC(¢1-¢7) 89.1+5.8 74.6+6.5 93.1+£3.0
PS-SRC(¢1-¢2) 85.04+3.5 76.3+7.1 93.9+3.5
PS-SRC(¢2-¢2) 74.2+7.2 729453 92.3+3.5

of the correctly predicted patches is much higher than that of
misclassified patches. Then with the the majority voting, each
image set would probably be correctly classified.

2) Different Regularizers: We notice that on both the MoBo
and Youtube Celebrities dataset, the ¢; norm regularized PS-
SRC, i.e. PS-SRC (¢1-¢1), usually achieves the best perfor-
mance. On the ETH-80 and Kinect Hand Gesture datasets,
PS-SRC (¢1-¢5) achieves the best performance, while the
performance of PS-SRC (¢1-/1) is still not bad. On all the
datasets, PS-SRC (/5-/5) usually achieves the worst perfor-
mance. The reason may be that the £; norm on the v’ helps
remove the noisy test patches, which is important for the good
performance of image set classification. On the MoBo, ETH-
80, Kinect Hand Gesture datasets, most patches are relatively
clean, except for the background patches which are prone to
be clustered in one cluster, therefore the performance of /4
norm and that of ¢, norm on w' are similar, which agrees
with the fact that CRC [27] achieves similar performance with
SRC [13] for face recognition. On the Youtube Celebrities
dataset, as the variance, like occlusion and pose variance, is
significant, many patches are very noisy, and randomly dis-
tributed in different clusters. These outlier patches can easily
affect the prediction if ¢5 norm regularizers are used, and
reduce the recognition accuracy significantly. In conclusion,
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Fig. 5.

Patch label prediction confusion matrix on ETH-80 (S1 setting). In
patch prediction confusion matrix, the element locates at (¢,7) is the percentage
of the patches from the it" class be classified to the 5" class.

as suggested by the Wilcoxon sign-ranks test,” we can either
choose L1-L1 formulation or L1-L2 formulation when we have
no prior about data. Experiments on YouTube celebrities also
suggests that once we know that the data is noisy, L1-L1
formulation is probably a better choice, which agrees with
findings in previous works [43][14].

3) Visualization of Virtual Patches: We also show some
reconstructed virtual test patches for test sets from car, dog,
and apple in Fig 6. It can be seen that some virtual test patches
are very class-discriminative, like the legs of dog, the shape of
apple, efc., therefore these virtual patches help the prediction
of the test set.

D. The Effect of Alignment

To further demonstrate the effectiveness of our method to
misalignment, we test different methods on the Multi-PIE
dataset [44] by using well-aligned images and images with
misalignment. Specifically, Multi-PIE contains images of 337
persons taken under the four sessions over the span of 5
months. For each persons, images are taken under 15 different
view angles and 19 different illuminations while displaying
different facial expressions. In our experiments, the 249 per-
sons in session 1 are used as the evaluation. Specifically, for
each person, the frontal face images with neutral expression
and different illuminations are used as the training set, and
all the images with the same pose (15° or -15°) and different
illuminations are used as the test sets. Therefore we have 2
test sets for each person (Please refer to Fig. 7 to see the
training/test sets.). We use two sets of data for evaluation. The
first one is aligned with manually annotated eye corners, and
each set contains 20 images. The comparison data are obtained
by resizing the faces detected with OpenCV face detector 5.
Then we resize all the faces to 30 x 30. We use the same
parameters as that on Youtube Celebrities in our experiments.
The performance of different methods on this datasets is listed
in Table IV. As there are outliers, misalignment for the images
in the same set, misalignment between images in test and
training set (0° vs. 15°, 0° vs. -15°), and the number of images
within each set is very limited (only around 10 images per set)

"We have conducted the Wilcoxon sign-ranks test [42] to compare the
performance of 11-11 and 11-12 formulation. In Wilcoxon sign-ranks test, the
sum of ranks for the positive differences is Rt = 37, and the sum of ranks
for the negative differences is R~ = 8. According to the table of exact critical
values for the Wilcoxon’s test, for a confidence level of o« = 0.05 and N=9
datasets, the difference between the classifiers is significant if the smaller of
the sum is equal or less than 5. We therefore don’t reject the null-hypothesis.

8 About 50% face images are not detected.

(a) Some virtual test patches for one test set which is from the class of
apple.

(b) Some virtual test patches for one test set which is from the class of
dog.

Fig. 6. Visualization of virtual test patches (i.e., X*u?) from ETH-80. We
randomly sample some virtual patches X “u’ and reshape them 8 x 8 patches.
We can see these virtual test patches corresponding to some typical patches in
each class, which helps the image set classification. These patches demonstrate
that the learnt virtual patches are meaningful.

which breaks the basis of manifold based methods, therefore
many conventional methods perform extremely poor on this
dataset if the data with misalignment are used. However, our
method still achieves reasonable performance on the directly
cropped data because patch-based representation overcomes
the alignment issue to some extent and ¢; norm also helps
remove the outliers in image set representation.

E. Evaluation of Important Parameters

1) Patch Size: We illustrate the performance of our method
with patches of different size in Fig. 8 on the ETH-80 dataset.
Need to mention that in real applications, the patch size should
be determined based on the specific task. For example, for
hand gesture recognition, larger patches cover larger region
which is meaningful for hand gesture recognition. Patches at
different sizes covers object parts at different scales, therefore
besides the single scale patches, we can also use patches

1051-8215 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires |IEEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCSVT.2015.2469571, |EEE Transactions on Circuits and Systems for Video Technology

Fig. 7. Some images from the Multi-PIE dataset. Images in the first row are
obtained by resizing the faces detected with OpenCV face detector, therefore
there are some outliers and misalignment for these images. Images in the
second row are aligned by using the manually annotated eye corners.

TABLE IV
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON
MULTI-PIE UNDER DIFFERENT SETTINGS (%)

aligned images | unaligned images
-15° 15° -15° 15°
SRC [13] 721 71.5 35.7 21.7
MMD [1] 76.7 78.3 9.6 8.0
AHISD [2] 71.5 79.2 17.7 11.7
CHISD [2] 77.1 79.9 10.4 6.4
SANP [24] 77.1 79.9 14.9 7.2
ISCRC [28] 727 79.1 28.9 16.5
MSSRC [14] 70.7 75.9 28.1 35.3
PS-SRC(¢1-£1) | 99.2 98.8 94.8 92.4

extracted from multiple scales for image classification based
on our method, that it we generate virtual test patches of
different size and do the majority voting with all these virtual
test patches for image set label prediction. For example, on
ETH-80, when we use patches of two different size (6 and
8), the accuracy reaches to (75.44+6.2)%. If we use patches
of three different size (4, 6, 8), the accuracy reaches to
(77.14£6.6)%. Furthermore, in this figure, it can be clearly seen
that nonnegative constraint regularized PS-SRC achieves better
performance than that without the nonnegative constraint,
which validates the correctness of our formulation.

m PS-SRC without nonnegative constraint B PS-SRC with nonnegative constraint

4 6 8 10 12
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Fig. 8. Effect of patches of different size on the performance of PS-SRC

(£1-£1) with or without non-negativity constraints.

2) The number of clusters (K in k-means): K 1is an
important parameter in our method. We show the performance
of different K on ETH-80 and MoBo in Fig. 9. On ETH-80,
the structure of the object is diverse, though the number of
class is small, the content of patches are complex, therefore
larger K corresponds to better performance. Though structure
of face is relatively easy, MoBo has many persons, whose

10

faces are different, the performance corresponding to larger
K (800-1200) is better. In summary, in real applications, we
should determine K based on the contents complexity of the
patches, which is probably proportional to the increase of
classes. Moreover, this experiment also hints that our method
is scalable to large scale dataset because we can use a larger
K for a larger dataset.
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Fig. 9. Effect of different K in k-means on image set classification on ETH-
80 and MoBo. The evaluation is based on the PS-SRC (¢1-£1) formulation.

3) PS-SRC tuning parameters: \ and ~y: )\ and -y are two
parameters in our PS-SRC formulation. In this paper, we
set them to the same value for simplification. We show the
classification accuracy and time cost with different A () in
Fig. 11. We can see that the accuracy is relatively stable when
they are between 0.0001 and 0.01. But it is more efficient when
A = v = 0.01. So for simplification, we just set them to be
0.01 in PS-SRC (¢1-£1) on all the datasets. Moreover, we also
show the different combination of A and ~ in different PS-SRC
formulations on the ETH-80 and MoBo datasets in Fig. 10.
Fig. 10 shows that by setting A and ~ with different values,
the performance of PS-SRC (¢1-/1) can be further boosted.
Moreover, Fig. 10 also shows that the performance of PS-
SRC (¢5-f5) is worse than both PS-SRC (¢1-¢1) and PS-SRC
(b1-L2).

F. Computational Costs

We also list the computational costs of different methods
in Table V. The test bed is a dual cores PC within Intel
Xeon CPU (2.53GHz) and 14G RAM, and implementation
is based on the Matlab. The reported time costs of our
method in Table V include the whole pipeline for predicting
a test set, including patch partitioning, partitioning all the
test patches into their corresponding clusters based on the
centers of training samples, PS-SRC, and label prediction. The
preprocessing time (patches partitioning and partitioning all
the patches into their corresponding clusters) is about 0.25
second for Youtube Celebrities with 50 images per set, and
the time costs for optimization and prediction are about 3.9
and 1.7 seconds for ¢; —¢; formulation and ¢1 —¢5 formulation,
respectively.

In our method, suppose there are N classes in all, each
class contains p images, each image contains ¢ patches (q is
around 50), and we partition the training set into K clusters,
and on average patches from each test sets only fall into
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Fig. 11. Effect of different A\ (or ) on the performance of PS-SRC (¢1-¢1)
on MoBo. For simplification, we set A = . The dash line corresponds to the
time cost. Best viewed in color.

M clusters (M is around 50-100 based on observation in
Fig. 3). Therefore the dictionary size for test patches within
each cluster is around %. The time cost for patches within
each cluster is a function parameterized with %: T(%).
Then the total time of our method is around M T(%). But
for ISCRC, the dictionary size is Np. If K = 1000 and q
= 50, then the dictionary size of our method is only % of
that of ISCRC. Moreover, it is also worthy noting that the
feature dimensionality of our method is much smaller than that
in ISCRC. As the computational cost increases significantly
with the dictionary size and dimensionality of the features
to be encoded, therefore though we have many clusters, the
computational cost of our method is only slightly slower
than that of ISCRC for ¢;-¢; formulation. As for the ¢;-
lo formulation, it is even faster than that of ISCRC. Need
to mention that as the number of classes increases, we can
increase K accordingly, therefore the dictionary size of our
method is relatively stable. But for ISCRC, the dictionary size
would be very huge. Therefore though the computational cost
of our method is not the fastest, it is scalable to large scale
datasets. It is also worth noting that metaface [45] can be used
in ISCRC and our method to compress the training set, which
will further accelerate the ISCRC and our algorithm.

We also try to cluster the test patches first and partition the
training patches based on the cluster centers of test patches on
the Youtube Celebrities (50 images per set), the time cost is
113.67 sec per test set, and the accuracy is 73.40%, which is
almost the same with our current method. But when training
image is 100, the program has run for 3 days without any
results. So it proves that it is infeasible to cluster test patches

0.02 0.04 0.06 0.08 0.1
A

Accuracy with different A and ~ in PS-SRC on image set classification on ETH-80 and MoBo. Best viewed in color.
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TABLE V
TIME COST OF DIFFERENT METHODS ON YOUTUBE CELEBRITIES (50
IMAGES PER SET)

method MMD MDA AHISD CHISD

time(sec) 0.33 0.15 1.22 42.27
SANP ISCRC  MSSRC  PS-SRC(¢1-f1)  PS-SRC(¢1-¢2)
213.23 2.92 0.42 4.15 1.95

first and partition the training patches based on the cluster
center of test patches. Moreover, the main bottleneck of our
method lies on the optimization of sparse coding. By using
more advanced sparse coding solver, the algorithm can be
further sped up.

VI. CONCLUSION

In this paper we propose a simple patch set based repre-
sentation method for image set classification. To improve the
computational efficiency, we propose to cluster the training
patches and partition the test patches based on the clusters
of the training patches. Accordingly, a nonnegative constraint
regularized PS-SRC is used to predict the labels for virtual
test patch within each cluster and the labels of all virtual test
patches are aggregated with majority voting to predict the label
of the whole test set. Moreover, we also show that sparse
constraint is important for getting rid of the noisy patches
in our formulation. Experimental results on MoBo, Youtube
Celebrities, ETH-80, and Kinect Hand Gesture validate the
effectiveness of our method for image set classification.
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